Advanced Topics in Random Graphs Exercise Sheet 4

Question 1. Given a graph G = (V, E) with |V| = 2n consider the permanent of it's adjacency matrix A. Show that every permutation σ of [2n] with non-zero contribution to perm(A) corresponds to a cover of the vertices of G by cycles and isolated edges, which we call a cycle cover.

Conversely, given a pair of perfect matchings M_1 and M_2 of G show that $M_1 \cup M_2$ is a subgraph of G covering the vertices with even length cycles and isolated edges, which we call an even cycle cover.

Using the above show that $|\Phi(G) \times \Phi(G)| \leq \operatorname{perm}(A)$ and show that

$$\phi(G) \le \prod_{v \in V} \left(d(v)! \right)^{\frac{1}{2d(v)}}.$$

Question 2. Let $X = (X_1, \ldots, X_n)$ be a discrete random variable. Show that there are non-negative constants h_1, \ldots, h_n such that $H(X) = \sum_i h_i$ and

$$\sum_{i \in I} h_i \le H(X_I)$$

for every $I \subseteq I$.

(Hint : Consider the proof of the Bollobás-Thomason Box Theorem in the notes).

Question 3. Let \mathcal{G} be a set of graphs on [n] such that for every pair of graphs $G_i, G_j \in \mathcal{G}$ there is an edge in their intersection $G_i \cap G_j$. How large can \mathcal{G} be?

Suppose instead that we insist that there is a triangle in each intersection. Give an explicit example of a family of size $2^{\binom{n}{2}-3}$ with this property.

Let us presume for ease of presentation that n is even. We consider each G_i as a subset of the set $U = \binom{n}{2}$, and for each equipartition $[n] = A \cup B$ such that |A| = |B|, let U(A, B) be the set of edges which lie entirely in A or B.

Show that the trace of \mathcal{G} on any U(A, B) is an intersecting family. Hence by considering the trace of \mathcal{G} over the family $\mathcal{F} = \{U(A, B) : (A, B) \text{ an equipartition}\}$ show that

$$|\mathcal{G}| \le 2^{\binom{n}{2}-2}$$

Question 4. Suppose \mathcal{G} is set of graphs on [n] such that for every pair of graphs $G_i, G_j \in \mathcal{G}$ the intersection $G_i \cap G_j$ contains no isolated vertices. Prove an upper bound for $|\mathcal{G}|$ and show that it is tight.