Advanced Topics in Random Graphs Exercise Sheet 4

Question 1. Given a graph $G=(V, E)$ with $|V|=2 n$ consider the permanent of it's adjacency matrix A. Show that every permutation σ of $[2 n]$ with non-zero contribution to $\operatorname{perm}(A)$ corresponds to a cover of the vertices of G by cycles and isolated edges, which we call a cycle cover.

Conversely, given a pair of perfect matchings M_{1} and M_{2} of G show that $M_{1} \cup M_{2}$ is a subgraph of G covering the vertices with even length cycles and isolated edges, which we call an even cycle cover.

Using the above show that $|\Phi(G) \times \Phi(G)| \leq \operatorname{perm}(A)$ and show that

$$
\phi(G) \leq \prod_{v \in V}(d(v)!)^{\frac{1}{2 d(v)}}
$$

Question 2. Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a discrete random variable. Show that there are non-negative constants h_{1}, \ldots, h_{n} such that $H(X)=\sum_{i} h_{i}$ and

$$
\sum_{i \in I} h_{i} \leq H\left(X_{I}\right)
$$

for every $I \subseteq I$.
(Hint : Consider the proof of the Bollobás-Thomason Box Theorem in the notes).

Question 3. Let \mathcal{G} be a set of graphs on [n] such that for every pair of graphs $G_{i}, G_{j} \in \mathcal{G}$ there is an edge in their intersection $G_{i} \cap G_{j}$. How large can \mathcal{G} be?

Suppose instead that we insist that there is a triangle in each intersection. Give an explicit example of a family of size $2\binom{n}{2}-3$ with this property.

Let us presume for ease of presentation that n is even. We consider each G_{i} as a subset of the set $U=\binom{n}{2}$, and for each equipartition $[n]=A \cup B$ such that $|A|=|B|$, let $U(A, B)$ be the set of edges which lie entirely in A or B.

Show that the trace of \mathcal{G} on any $U(A, B)$ is an intersecting family. Hence by considering the trace of \mathcal{G} over the family $\mathcal{F}=\{U(A, B):(A, B)$ an equipartition $\}$ show that

$$
|\mathcal{G}| \leq 2^{\binom{n}{2}-2}
$$

Question 4. Suppose \mathcal{G} is set of graphs on [n] such that for every pair of graphs $G_{i}, G_{j} \in \mathcal{G}$ the intersection $G_{i} \cap G_{j}$ contains no isolated vertices. Prove an upper bound for $|\mathcal{G}|$ and show that it is tight.

